Estimation of Bradley-Terry Model Parameters: (with Ali Jadbabaie er Devavrat Shah)
(1) Motivation:

- Measure the level of skill in sports
- [Getty et al 2018]: Luck vs skill in fantasy sports \leftarrow motivated by policy-making on gambling
- [Misra-Shah-Ranganathan 2020] : Hypothesis testing for pure skill
- Statistical Formulation:
- Fix constants $\delta \in(0,1)$ and $\gamma, \sigma>0$.
-Let $P_{S_{s y}}(\sigma)=$ set of all probability density functions (PDFs) on $\left[\dot{\delta}_{3},\right]$ that are $\geqslant r$ and σ-Lipschitz non-parametria \hat{T} continuous, i.e. $P_{\alpha} \in P_{\delta_{\alpha},}(\sigma) \Leftrightarrow P_{\alpha}$ is a $P D F$ and $\forall x, y \in[\delta, 1],\left|P_{\alpha}(x)-P_{\alpha}(y)\right| \leqslant \sigma|x-y|, \forall x \in[\delta, 1]$, $P_{\alpha}(x) \geqslant \gamma$. class
- Each sport has an unknown PDF $P_{\alpha} \in P_{\sigma \sigma}(\sigma)$ of merit values.

- Suppose there is a tournament with $n \geqslant 2$ players: $\{1, \ldots, n\}$.

Each player i has merit value $\alpha_{i} \sim P_{\alpha}$ so that $\alpha_{1, \ldots,}, \alpha_{n} \stackrel{i i d}{\sim} P_{\alpha}$.

- There are $\binom{n}{2}$ independent two-player games in a tournament, with likelihoods:
$\mathbb{P}\left(j\right.$ beats $\left.i \mid \alpha_{1}, \ldots, \alpha_{n}\right)=\frac{\alpha_{j}}{\alpha_{i}+\alpha_{j}}$ for all $i \neq j$.
This is the Bradley-Terry Model !
- We see observations: $\{z(i, j) \triangleq \mathbb{1}\{j$ beats $i\}: 1 \leq i<j \leq n\}$. (For $i>j, z(i, j)=1-z(j, i)$, and $z(i, i)=0$.)
- GOAL: Estimate P_{α} or $h\left(P_{\alpha}\right) \triangleq-\int_{S}^{1} P_{\alpha}(t) \log \left[P_{\alpha}(t)\right] d t$ from observations.

$$
\uparrow \text { differential entropy }\left\{\begin{array}{l}
\prod_{\delta} \uparrow_{1}^{\text {Dirac measure }} \Rightarrow h\left(P_{\alpha}\right)=-\infty \\
\prod_{\delta} \overbrace{1}^{\text {uniform measure }} \Rightarrow h\left(P_{\alpha}\right)=\log (1-\delta)
\end{array} \leftarrow\right. \text { Pure luck skill }
$$

- Approach:

Focus $\left\{\begin{array}{l}1) \text { Estimate Bradley-Terry Model parameters } \alpha_{1}, \ldots, \alpha_{n} \text { based on observations. }\end{array}\right.$ Talk Suppose estimates are $\hat{\alpha}_{1}, \ldots, \hat{\alpha}_{n}$.
2) Estimate P_{α} or $h\left(p_{\alpha}\right)$ using $\hat{\alpha}_{1}, \ldots, \hat{\alpha}_{n}$.
(Robust kernel density estimation \leftarrow use $\hat{\alpha}_{1}, \ldots, \hat{\alpha}_{n}$ instead of $\alpha_{1}, \ldots, \alpha_{n}$.)

$$
\left.\left.\xrightarrow[L]{\rightarrow} \hat{P}_{\alpha}(x)=\frac{1}{n} \sum_{i=1}^{n} \frac{1}{h} K\left(\frac{x-\hat{\alpha}_{i}}{h}\right)\right\} \begin{array}{c}
\text { kernel } \\
\text { bandwidth }
\end{array}\right\} \begin{aligned}
& \text { Parzen-Rosenblatt } \\
& \text { estimator }
\end{aligned}
$$

(2) Bradley - Terry Model: Minimax Estimation

- [Bradley-Terry 1952] (originally proposed by [Zermelo 1929]): Ranking based on paired comparisons.
- n items $\{1, \ldots, n\}$ with underlying merits $\alpha_{1}, \ldots, \alpha_{n} \geqslant 0$
- Easy to compare any two, but hard to rank all.
- Use model $\mathbb{P}(i>j)=\frac{\alpha_{i}}{\alpha_{i}+\alpha_{j}}$ of pairwise comparisons to find "true" merits $\alpha_{1}, \ldots, \alpha_{n}$.

Anuran Makur

- Plackett-Luce Model: [Luce 1959], [Plackett 1975] \leftarrow social choice theory leconometrias
- Luce's choice axiom: Probability of selecting one item over another in a set of items is not affected τ independence of by the presence or absence of other items in the set. $\tau_{\text {axiom for prob. model }}$ irrelevant alternatives over selection
- Equivalent model: n items $\{1, \ldots, n\}$ with merits $\alpha_{1}, \ldots, \alpha_{n} \geqslant 0$

$$
\mathbb{P}(\text { select } i)=\frac{\alpha_{i}}{\sum_{j=1}^{n} \alpha_{j}}
$$

- Distribution over permutations/rankings:
- Pairwise selection \rightarrow Bradley-Terry model
- Thurstonian Model: [Thurstone 1927] \leftarrow psychometrics
- Law of Comparative Judgment: "Discriminal" process to rank n items $\{1, \ldots, n\}$ is modeled by first associating merits $\alpha_{1}, \ldots, \alpha_{n} \geqslant 0$ to the items, and then ranking them by ranking the n random variables $\alpha_{1}+X_{1}, \ldots, \alpha_{n}+X_{n}$ for i.i.d. $\underbrace{X_{1}, \ldots, X_{n}}_{\text {noise in discriminal process }}$.
- Distribution over permutations/rankings:

$$
\forall \sigma, \quad \mathbb{P}_{T}(\sigma)=\mathbb{P}\left(\alpha_{\sigma(1)}+X_{\sigma(1)}>\alpha_{\sigma(2)}+X_{\sigma(2)}>\cdots>\alpha_{\sigma(n)}+x_{\sigma(n)}\right)
$$

permutation
generalized extreme value (Type I) dist. of $\{1, \ldots, n\}$

- Equivalent to Plackett-luce model if and only if $X_{1}, \ldots, X_{n} \stackrel{\text { id }}{\sim}$ Gumbel $\left(\mu, \beta_{2}\right)$. [Yellott 1977]
(Note: $F_{x}(x) \triangleq e^{-e^{-(x-\mu) / B}}$ is CDF of Gumbel dist.) $\tau_{\text {real }}$ positive scale location
- Minimax Formulation:

Find upper and lower bounds on:
where infimum is over all estimators π of π based on $\{z(i, j): i<j\}$.
$\tau_{\text {could be randomized, must be a prob. mass function }}$
[continued.]

Anuran Makur
(3) MINIMAX UPPER BOUND: \leftarrow construct estimator

- Rank Centrality: [Negahbar-Oh-Shah 2017]
- Define the row stochastic matrix $S \in \mathbb{R}^{n \times n}$:

$$
\begin{array}{ll}
\forall i \neq j, \quad S(i, j) \triangleq \frac{1}{n-1} \cdot \frac{\alpha_{j}}{\alpha_{i}+\alpha_{j}}>0, \\
\forall i, \quad S(i, i) \triangleq 1-\frac{1}{n-1} \sum_{k \neq i} \frac{\alpha_{k}}{\alpha_{i}+\alpha_{k}}=\frac{1}{n-1} \sum_{k \neq i} \frac{\alpha_{i}}{\alpha_{i}+\alpha_{k}}>0 .
\end{array}
$$

(Clearly, $\left.\sum_{j=1}^{n} s(i, j)=1, \forall i.\right)$

- S defines a Markov chain on the state-space of players $\{1, \ldots, n\}$.
- Detailed Balance Conditions:

$$
\forall i \neq j, \quad \pi(i) S(i, j)=\frac{\alpha_{i}}{\sum_{k=1}^{n} \alpha_{k}} \cdot \frac{1}{n-1} \cdot \frac{\alpha_{j}}{\alpha_{i}+\alpha_{j}}=\frac{\alpha_{j}}{\sum_{k=1}^{n} \alpha_{k}} \cdot \frac{1}{n-1} \cdot \frac{\alpha_{i}}{\alpha_{i}+\alpha_{j}}=\pi(j) S(j, i) .
$$

Hence, S defines a reversible Markov chain with invariant distribution π : $\pi=\pi \mathrm{S}$. | S satisfies |
| :---: |
| Kolmagorov |
| | criterion

- Construct estimator $\tilde{S} \in \mathbb{P}^{p \times x}$ of S based on $Z(i, j)^{\prime} s$:

$$
\left.\begin{array}{l}
\forall i \neq j, \quad \widetilde{S}(i, j) \triangleq \frac{1}{n-1} Z(i, j) \geqslant 0, \\
\forall i, \quad \widetilde{S}(i, i) \triangleq 1-\frac{1}{n-1} \sum_{k \neq i} Z(i, k)=\frac{1}{n-1} \sum_{k \neq i} Z(k, i) \geqslant 0 . \\
\text { Clearly, } \left.\sum_{j=1}^{n} \tilde{S}(i, j)=1, \forall i .\right)
\end{array}\right\} \tilde{S} \text { is row stochastic }
$$

- \tilde{S} defines another Markov chain. « not necessarily reversible or ergodic

Let $\tilde{\pi}=\tilde{\pi} \tilde{S}$ be any invariant distribution of \tilde{S}.

- $\tilde{\pi}$ is an estimator of π.

Thy: [Chen et al 2019]
a) $\frac{\|\tilde{\pi}-\pi\|_{\infty}}{\|\pi\|_{\infty}}=O\left(\frac{1}{\delta} \sqrt{\frac{\log (n)}{n}}\right)$ with probability $\geqslant 1-O\left(n^{-5}\right)$.
b) $\begin{aligned} \frac{\|\tilde{\pi}-\pi\|_{2}}{\|\pi\|_{2}}=O\left(\frac{1}{\sqrt{n}}\right) \quad \text { with probability } \geqslant 1-O\left(n^{-5}\right) . \\ \quad_{\text {if }} \delta=\Theta(1)\end{aligned}$

- Can we bound $\|\tilde{\pi}-\pi\|_{1}$ with high probability?

Yes!
[continued.]

- Theorem: $\inf _{\hat{\pi}} \operatorname{super}^{\operatorname{son}} \sup _{P_{\alpha} \in P_{\delta, r}(\sigma)} \mathbb{E}\left[\|\hat{\pi}-\pi\|_{1}\right] \leq \sup _{P_{\alpha} \in \mathcal{S}_{, y}(\sigma)} \mathbb{E}\left[\|\tilde{\pi}-\pi\|_{1}\right]=O\left(\frac{1}{\sqrt{n}}\right)$ for all sufficiently large n.
- Proof:

Using [chen et al 2019] part (b), with probability $\geqslant 1-O\left(n^{-5}\right)$,

$$
\|\tilde{\pi}-\pi\|_{1} \leq \sqrt{n}\|\tilde{\pi}-\pi\|_{2} \leqslant \dot{C}\|\pi\|_{2}^{\text {some constant }}
$$

for all sufficiently large n, using equivalence of norms.
Since $\|\pi\|_{2} \leq \frac{1}{\delta \sqrt{n}}$ (because $\alpha_{i} \in[\delta, 1]$), we get:

$$
\|\tilde{\pi}-\pi\|_{1}=O\left(\frac{1}{\sqrt{n}}\right) \text { with probability } \geqslant 1-O\left(n^{-5}\right) .
$$

The law of total expectation and the bound $\|\tilde{\pi}-\pi\|_{1} \leqslant\|\tilde{\pi}\|_{1}+\|\pi\|_{1}=2$ yield the desired result.
(4) Minimax Lower Bound:

- Bayes Risk:

$$
\begin{aligned}
& \text { Bayes Risk: } \\
& \inf _{\hat{\pi}}^{\sup } P_{\alpha \in P_{\delta \gamma}(\sigma)} \mathbb{E}\left[\|\hat{\pi}-\pi\|_{1}\right] \geqslant \inf _{\hat{\pi} f}^{\mathbb{i n}^{\mathbb{E}}\left[\|\hat{\pi}-\pi\|_{1}\right]} \\
& \text { Choose } P_{\alpha}=C
\end{aligned}
$$

$\tau_{\text {Choose }} P_{\alpha}=\operatorname{Uniform}([\delta, 1])$.
How do we lower bound Bayes risk?

- Generalized Fano's Method:

$$
\alpha_{1}^{n} \triangleq\left(\alpha_{1}, \cdots, \alpha_{n}\right) \quad Z \triangleq\{Z(i, j): i<j\}
$$

-Lemma: $\left[x_{u}\right.$-Raginsky 2017] $\inf _{\hat{\pi}} \mathbb{E}\left[\|\left(\hat{\pi}-\pi \|_{1}\right] \geqslant \sup _{t>0} t\left(1-\frac{I\left(\alpha_{;}^{n} ; z\right)+\log (2)}{\log (1 / \mathcal{L}(t))}\right)\right.$ where $I\left(\alpha_{1}^{n} ; z\right) \triangleq D\left(P_{\alpha_{1}^{\prime}, z} \| P_{\alpha_{n}}, P_{z}\right)$ and $\mathcal{L}(t) \triangleq \sup _{\nu} \mathbb{P}\left(\|\pi-\nu\|_{1} \leqslant t\right)$ for $t>0$. $\tau_{\text {mutual }} \uparrow_{K L}$ divergence $\tau_{\text {small ball probability (measure of concentration) }}$

- Intuition: $\mathcal{L}(t) \uparrow \Rightarrow$ high conc. of $\pi \Rightarrow$ Bayes risk \downarrow (as we can estimate π easily).
$I\left(\alpha n^{n} ; z\right) \uparrow \Rightarrow z$ has lots of info. about $\pi \Rightarrow$ Bayes risk \downarrow.
-Proof: Fix any $\hat{\pi}$ and any $t>0$.
Consider Markov chain $\pi \rightarrow \alpha_{1}^{n} \rightarrow z \rightarrow \hat{\pi}$.

$$
\begin{aligned}
& I\left(\alpha_{1}^{n} ; z\right) \geqslant I(\pi ; \hat{\pi}) \quad[\mathrm{DPI}] \\
& =D\left(P_{\pi, \hat{\pi}} \| P_{\pi} \cdot P_{\hat{\pi}}\right)=D\left(P_{\pi, \hat{\pi}} \| Q_{\pi, \hat{\pi}}\right) \text {, where } Q_{\pi, \hat{\pi}} \triangleq P_{\pi} \cdot P_{\hat{\pi}} \\
& \geqslant D_{\hat{L}}\left(P_{\pi, \hat{r}}\left(\|\pi-\hat{\pi}\|_{1} \leqslant t\right) \| Q_{\pi, \hat{\pi}}\left(\|\pi-\hat{\pi}\|_{1} \leqslant t\right)\right) \quad\left[D P I:(\pi, \hat{\pi}) \mapsto \mathbb{1}\left\{\|\hat{\pi}-\pi\|_{1} \leq t\right\}\right] \\
& \hat{\tau}_{\text {binary } K L} p_{\text {divergence }} \\
& =D\left(P_{\pi, \hat{\pi}}\left(\|\pi-\hat{\pi}\|_{1} \leq t\right) \| \mathbb{E}_{\hat{\pi}}\left[P_{\pi}\left(\|\pi-\hat{\pi}\|_{1} \leq t\right)\right]\right) \\
& \geqslant P_{\pi, \hat{\pi}}\left(\|\pi-\hat{\pi}\|_{1} \leqslant t\right) \log \left(\frac{1}{\mathbb{E}_{\hat{\pi}}\left[P_{\pi}\left(\|\pi-\hat{\pi}\|_{1} \leq t\right)\right]}\right)-\log (2) \\
& \geqslant \mathbb{P}\left(\|\pi-\hat{\pi}\|_{1} \leqslant t\right) \log \left(\frac{1}{x}(t)\right)-\log (z) . \\
& \Rightarrow \mathbb{P}\left(\|\hat{\pi}-\pi\|_{1}>t\right) \geqslant 1-\frac{I\left(\alpha_{1}^{n} ; z\right)+\log (2)}{\log \left(\frac{1}{\mathcal{L}(t)}\right)} . \\
& \text { Lemma: } \forall p, q \in[0,1] \text {, }
\end{aligned}
$$

By Markov's inequality:

$$
\begin{aligned}
\mathbb{E}\left[\|\hat{\pi}-\pi\|_{1}\right] & \geqslant t \mathbb{P}\left(\|\hat{\pi}-\pi\|_{1}>t\right) \\
& \geqslant t\left(1-\frac{I\left(\alpha_{1}^{n} ; z\right)+\log (2)}{\log (1 / \mathcal{L}(t))}\right) .
\end{aligned}
$$

Take inf $\hat{\pi}$ and $s^{s u p} p_{t}$. This completes the proof.

- Bound $I\left(\alpha_{1}^{n} ; z\right):$ (Covering Number Method)
- For $\beta=\left(\beta_{1}, \ldots, \beta_{n}\right) \in[\delta, 1]^{n}$, let $P_{z \mid \beta}=P_{z \mid \alpha_{1}^{n}=\beta}$.
- Deft: For any $\varepsilon>0$, we say that $\left\{\beta^{(1)}, \ldots, \beta^{(M)}\right\} \subset[\delta, 1]^{n}$ is an ε-covering of $[\delta, 1]^{n}$ with cardinality M if $\forall B \in[\delta, 1]^{n}, \exists i \in\{1, \ldots, M\}, \quad D\left(P_{z \mid B} \| P_{z \mid B^{(i)}}\right) \leq \varepsilon$.
$\rightarrow M^{*}(\varepsilon) \triangleq \min \{M: \exists \varepsilon$-covering with cardinality $M\}$.
\uparrow q-covering number
-Lemma: [Yang-Barron 1999] $I\left(\alpha_{1}^{n} ; Z\right) \leqslant \inf _{\varepsilon>0} \varepsilon+\log \left(M^{*}(\varepsilon)\right)$.

$$
\begin{aligned}
& I\left(\alpha_{1}^{n} ; z\right)=D\left(P_{\alpha_{n}^{n}, z} \| P_{\alpha_{1}^{n}} \cdot P_{z}\right) \\
& =\mathbb{E}_{P_{\alpha_{i}^{n}, z}, z}\left[\log \left(\frac{P_{\alpha_{n}^{n}, z}}{P_{\alpha_{1}^{n}} \cdot P_{z}}\right)\right]=\mathbb{E}\left[\log \left(\frac{P_{z \mid \alpha_{1}^{n}} \cdot \frac{1}{M^{*}} \sum_{i=j}^{M^{*}} P_{z \mid \beta^{(i)}}}{P_{z} \cdot \frac{1}{M^{*}} \sum_{i=1}^{n} P_{z \mid \beta^{(i)}}^{(i)}}\right)\right] \\
& =\mathbb{E}_{\alpha_{1}^{\prime}}\left[D\left(P_{z \mid \alpha_{1}^{n}} \| \frac{1}{M^{*}} \sum_{i=1}^{M_{i}^{*}} P_{B B^{(i)}}\right)\right]-D\left(P_{z} \| \frac{1}{M^{*}} \sum_{i=1}^{N_{i=1}^{*}} P_{z \mid G^{(i)}}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\mathbb{E}_{a_{1}^{n}}[\underbrace{D\left(P_{z \mid \alpha_{1}^{n}} \| P_{\left.z \mid \beta^{\left(i\left(\alpha_{1}^{n}\right)\right.}\right)}\right)}]+\log \left(M^{*}(\varepsilon)\right) \\
& \leq \varepsilon \text { [} \varepsilon \text {-covering] } \\
& \leqslant \varepsilon+\log \left(M^{*}(\varepsilon)\right) \text {. }
\end{aligned}
$$

Take $\inf _{\varepsilon>0}$. (Note: Can also take supp $\alpha_{\alpha_{1}}$.)
$\tau_{\text {bound }}$ on channel capacity
-Lemma: $I\left(\alpha_{1}^{n} ; z\right) \leqslant \overbrace{\frac{1}{2} n \log (n)+\frac{(1-\delta)^{2}}{8 \delta^{2}}\left(2+\delta+\frac{1}{\delta}\right) n \text {. } . ~ . ~ . ~}^{\text {Lit }}$.
Proof: Let $\left.Q \triangleq\left\{\delta+\frac{(1-\delta) k}{\sqrt{n}}: k \in\{1, \ldots, 1 \sqrt{n}]\right\}\right\}$. \leftarrow quantize $[\delta, 1]$ Then, $\forall t \in[\delta, 1], \min _{s \in Q}|t-s| \leqslant \frac{1-\delta}{\sqrt{n}}$.
Claim: Q^{n} is an ε-covering with $\left|Q^{n}\right|=|Q|^{n} \leqslant n^{n / 2}$ and $\varepsilon=\frac{(i-\delta)^{2}}{8 \delta^{2}}\left(2+\delta+\frac{1}{\delta}\right) n$.
\rightarrow Pf: Fix any $\beta=\left(\beta_{1}, \ldots, \beta_{n}\right) \in[\delta, 1]^{n}$, and choose $\gamma=\left(\gamma_{1}, \ldots, r_{n}\right) \in Q^{n}$ such that $\left|\beta_{i}-\gamma_{i}\right| \leqslant \frac{1-\delta}{\sqrt{n}}, \forall i$.

$$
\begin{aligned}
D\left(P_{z \mid S} \| P_{z \mid \gamma}\right) & =\sum_{i<j} D\left(P_{z(i, j) \mid B} \| P_{z(i, j) \mid \gamma}\right) \\
& =\sum_{i<j} D\left(\frac{\beta_{j}}{\beta_{i}+\beta_{j}} \| \frac{\gamma_{j}}{\gamma_{i}+\gamma_{j}}\right) \leftarrow \text { binary KL divergence } \\
& \leqslant \sum_{i<j} x^{2}\left(\frac{\beta_{j}}{\beta_{i}+\beta_{j}} \| \frac{\gamma_{j}}{\gamma_{i}+\gamma_{j}}\right) \leftarrow \text { binary } x^{2} \text {-divergence } \\
& =\sum_{i<j}\left(\frac{\beta_{j}}{\beta_{i}+\beta_{j}}-\frac{\gamma_{j}}{\gamma_{i}+\gamma_{j}}\right)^{2}\left(2+\frac{\gamma_{i}}{\gamma_{j}}+\frac{\gamma_{j}}{\gamma_{i}}\right) \\
& \leq \underbrace{\left(2+\delta+\frac{1}{\delta}\right)}_{\substack{\left[\delta, \frac{1}{\delta}\right] \ni t \mapsto t+\frac{1}{t} \\
\text { maximized at endpoints }}} \sum_{i<j}\left(\left|\frac{\beta_{j}}{\beta_{i}+\beta_{j}}-\frac{\beta_{j}}{\gamma_{i}+\beta_{j}}\right|+\left|\frac{\beta_{j}}{\gamma_{i}+\beta_{j}}-\frac{\gamma_{j}}{\gamma_{i}+\gamma_{j}}\right|\right)^{2}
\end{aligned}
$$

$$
\leqslant\left(\frac{1}{4 \delta}\right)^{2}\left(2+\delta+\frac{1}{\delta}\right) \sum_{i<j}\left(\left|\beta_{i}-\gamma_{i}\right|+\left|B_{j}-\gamma_{j}\right|\right)^{2}
$$

$$
\leq \frac{(1-\delta)^{2}}{8 \delta^{2}}\left(2+\delta+\frac{1}{\delta}\right)(n-1)
$$

$$
\leq \varepsilon
$$

Using Yang-Barron Lemma,

$$
\begin{aligned}
I\left(\alpha_{1}^{n} ; z\right) & \leq \varepsilon^{*}+\log \left(M^{*}(\varepsilon)\right) \\
& \leq \varepsilon+\log \left(\left|Q^{n}\right|\right) \leftarrow \text { our } \varepsilon \text {-covering } \\
& \leq \frac{1}{2} n \log (n)+\frac{(1-\delta)^{2}}{8 \delta^{2}}\left(2+\delta+\frac{1}{\delta}\right) n .
\end{aligned}
$$

This completes the proof.

- Remark: This is better than standard information inequalites (tensorization bounds), which give $I\left(\alpha_{1}^{n} ; z\right)=O\left(n^{2}\right)$.
[continued.]

Anuran Makur

- Bound Small Ball Probability: \leftarrow no standard approach in the literature
- Lemma: $\forall t>0, \quad \mathscr{L}(t) \leqslant\left(\frac{2 e}{1-\delta}\right)^{n} t^{n-1}$.

Proof: For any $t>0$,

$$
\leqslant\left(\sup _{\tau \in \mathbb{B}_{B^{n-1}}} \tilde{\pi}(\tau)\right) \cdot \underbrace{}_{\text {volume of } l^{\prime} \text {-bal } \|^{\operatorname{vol}\left(\left\{x \in \mathbb{B}^{n-1}:\|x\|^{n-1}\right.\right.} \text { with radius } t=\frac{2^{n-1}}{(n-1)!} t^{n-1}}
$$

$$
\left.\begin{array}{l}
=\frac{2^{n-1}}{(n-1)!} t^{n-1} \cdot \sup _{\tau \in \mathbb{B}^{n-1}} P_{\tilde{\pi}}(\tau) \\
\leqslant \frac{2^{n-1}}{(n-1)!} t^{n-1} \cdot \frac{n^{n-1}}{(1-\delta)^{n}}
\end{array}\right\}
$$

$$
\frac{\text { Lemma: }}{\sup _{\tau \in \mathbb{B}^{n-1}}} P_{\tilde{\pi}}(\tau) \leq \frac{n^{n-1}}{(1-\delta)^{n}}
$$

(Follows from explicit calculation of PDF $P_{\tilde{\pi}}$ from $P_{\alpha,}^{n}$ based on change-of var.

$$
=\frac{1}{2} \cdot \frac{n^{n}}{n!}\left(\frac{2}{1-\delta}\right)^{n} t^{n-1}
$$

$$
\left.\leqslant \frac{1}{5 \sqrt{n}}\left(\frac{2 e}{1-\delta}\right)^{n} t^{n-1}\right\} \text { stirling's formula: } n!\geqslant \frac{5}{2} \sqrt{n} \frac{n^{n}}{e^{n}}
$$

$$
\leq\left(\frac{2 e}{1-\delta}\right)^{n} t^{n-1}
$$

This completes the proof.
Theorem: For any $\varepsilon>0$,
(Lower Bound)

$$
\begin{aligned}
& \text { any } \varepsilon>0 \text {, } \\
& \inf \sup _{\hat{\pi}} \quad \mathbb{P}\left[\mid \hat{\pi}-\pi \|_{1}\right] \geqslant\left(\frac{\varepsilon}{4+2 \varepsilon}\right) \frac{1}{n^{\frac{1}{2}+\varepsilon}(\sigma)}
\end{aligned}
$$

for all $n \geqslant 2$ sufficiently large (depending on ε, δ).

- Remark: For any $\varepsilon>0$, and all $n \in \mathbb{N}$ sufficiently large:

$$
\Omega\left(\frac{1}{n^{\frac{1}{2}+\varepsilon}}\right) \leqslant \inf _{\hat{\pi}}^{\sup } P_{\infty} \in P_{S_{3}, \sigma} \text { 正 }\left[\|\hat{\pi}-\pi\|_{1}\right] \leqslant O\left(\frac{1}{\sqrt{n}}\right)
$$

[continued.]

$$
\begin{aligned}
& \mathcal{L}(t)=\sup _{\nu} \mathbb{P}\left(\|\pi-\nu\|_{1} \leqslant t\right) \\
& \leqslant \sup _{\tilde{\nu}} \mathbb{P}\left(\|\tilde{\pi}-\tilde{\nu}\|_{1} \leqslant t\right) \longleftarrow \begin{array}{l}
\tilde{\pi}=(\pi(1), \ldots, \pi(n-1)) \\
\tilde{\nu}=(\nu, \nu n
\end{array} \\
& =\sup _{\tilde{\nu}} \int_{\mathbb{B}^{n-1}} P_{\tilde{\pi}}(\mathcal{T}) \mathbb{1}\left\{\|\mathcal{T}-\tilde{\nu}\|_{1} \leqslant t\right\} d \mathcal{T} \text { of } \tilde{\pi} \text { (Note: } \pi \text { has degenerate PDF.) }
\end{aligned}
$$

- Proof: Fix any $\varepsilon>0$. Using previous lemmata:

$$
\begin{aligned}
& \inf _{\hat{\pi}}^{\inf } \sup _{\alpha} \in P_{0, \gamma}(\sigma) \mathbb{E}\left[\|\hat{\pi}-\pi\|_{1}\right] \geqslant \inf _{\hat{\pi}} \mathbb{E}\left[\|\hat{\pi}-\pi\|_{1}\right] \\
& P_{\alpha}=\operatorname{Uniform}[[s, 1]) \\
& \geqslant \sup _{t>0} t\left(1-\frac{I\left(\alpha_{1}^{n} ; z\right)+\log (2)}{\log (1 / \mathcal{L}(t))}\right) \quad \text { Generalized Fao Lena] } \\
& \geqslant \sup _{t>0} t\left(1-\frac{\frac{1}{2} n \log (n)+\frac{(1-\delta)^{2}}{8 \delta^{2}}\left(2+\delta+\frac{1}{\delta}\right) n+\log (2)}{(n-1) \log (1 / t)-\log (2 e /(1-\delta)) n}\right) \quad \begin{array}{l}
{\left[\begin{array}{l}
\text { upper Bounds } \\
\text { on } I(\alpha, n)(z) \\
\text { and } R(t)]
\end{array}\right]}
\end{array} \\
& \geqslant \sup _{t>0} t\left(1-\frac{1+O\left(\frac{1}{\log (n)}\right)}{\frac{2(n-1) \log (1 t)}{n \log (n)}-O\left(\frac{1}{\log (n)}\right)}\right) \\
& \geqslant \frac{1}{n^{\frac{1}{2}+\varepsilon}}\left(1-\frac{1+O(1 / \log (n))}{(1+2 \varepsilon)\left(1-\frac{1}{n}\right)-O(1 / \log (n))}\right) \\
& \rightarrow 1-\frac{1}{1+2 \varepsilon}=\frac{2 \varepsilon}{1+2 \varepsilon} \text { as } n \rightarrow \infty \\
& \geqslant \frac{1}{n^{\frac{1}{2}+\varepsilon}}\left(\frac{\varepsilon}{4+2 \varepsilon}\right) \overrightarrow{\text { for } n \geqslant 2 \text { sufficiently large. }}
\end{aligned}
$$

This completes the proof.

